www.bre.co.uk

BRE Test Report

Testing MVHR product for inclusion in the PCDB of the NCM, SAP

- Aldes Inspirair Top 450 Premium

Prepared for:	Jean-Rémi Vasson
Date:	07 th November 2023
Report Number:	P125968-1001

BRE Watford, Herts WD25 9XX

Customer Services 0333 321 8811

From outside the UK: T + 44 (0) 1923 664000 F + 44 (0) 1923 664010 E enquiries@bre.co.uk www.bre.co.uk Prepared for: Jean-Rémi Vasson Product Manager – Residential Heat Recovery Ventilation Aldes Aéraulique 20 Boulevard Irène Joliot-Curie 69200 Vénissieux France

Prepared by

Name	C Manescu
Position	Senior Engineer
Date	07 th November 2023

Signature

Z Clouchy Z

Authorised by

Position Principal Engineer

Date 07th November 2023

Signature

9.15evan

This report is made on behalf of Building Research Establishment Ltd (BRE) and may only be distributed in its entirety, without amendment, and with attribution to BRE to the extent permitted by the terms and conditions of the contract. Test results relate only to the specimens as received and tested. BRE has no responsibility for the design, materials, workmanship or performance of the product or specimens tested. This report does not constitute an approval, certification or endorsement of the product tested and no such claims should be made on websites, marketing materials, etc. Any reference to the results contained in this report should be accompanied by a copy of the full report, or a link to a copy of the full report.

BRE's liability in respect of this report and reliance thereupon shall be as per the terms and conditions of contract with the client and BRE shall have no liability to third parties to the extent permitted in law.

Report No. P125968-1001

Та	Table of Contents		
1	Introduction	3	
2	Details of test programme	9	
3	Test results	12	

1 Introduction

Aldes requested BRE undertake testing of a MVHR product for inclusion in the PCDB of the NCM, SAP.

The test methodology used for the testing of mechanical ventilation products with heat recovery for domestic applications, is; TESTM:01, *SAP 2012 Test method for centralised mechanical supply and extract ventilation systems with heat recovery used in single dwellings*. Issue 1.0, Dated 31/03/2015. http://www.ncm-pcdb.org.uk/sap/page.jsp?id=24

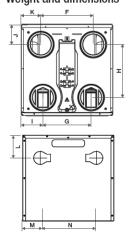
The product tested was:

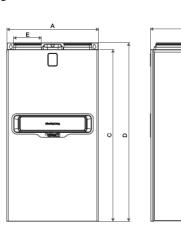
Product manufacturer	Aldes
Product name	Inspirair Top 450 Premium
Product serial number	1102347623180012
Date received at BRE	15 th August 2023

Description	INSPIRAI	TOP 450 PREMIUM	
Code	11023476		ald
			Made in
Ctrl num	110234762	23180012	
U	230 V		YM 'mode
f	50 / 60 Hz		
min/max [.17 A /	2.5 A	P min/max 16 W / 350 W	

Figure 1 Label of product tested

Page 3 of 17


Configuration of MVHR product tested


The product tested had the spigots located on the top side. The spigots were all 160 mm. The general arrangement of the spigots is shown in Figure 2.

3. GENERAL INFORMATION

3.1. Technical specifications Weight and dimensions

	Α
в	В
	C
	D
1	Ε
	F
	G
1	H
	I
	J
•	К
	L
	М
	N
T	

(mm) 560 (mm) 560 (mm) 1045 (mm) 1088 (mm) 160 (mm) 320 (mm) 294 (mm) 323 (mm) 134			InspirAIR® Top		
(mm) 560 (mm) 1045 (mm) 1088 (mm) 160 (mm) 320 (mm) 294 (mm) 323 (mm) 134			Classic Premium		
(mm) 1045 (mm) 1088 (mm) 160 (mm) 320 (mm) 294 (mm) 323 (mm) 134	(mm)	(mm)	560		
(mm) 1088 (mm) 160 (mm) 320 (mm) 294 (mm) 323 (mm) 134	(mm)	(mm)	560		
(mm) 160 (mm) 320 (mm) 294 (mm) 323 (mm) 134	(mm)	(mm)	1045		
(mm) 320 (mm) 294 (mm) 323 (mm) 134	(mm)	(mm)	1088		
(mm) 294 (mm) 323 (mm) 134	(mm)	(mm)	160		
(mm) 323 (mm) 134	(mm)	(mm)	320		
(mm) 134	(mm)	(mm)	294		
· · ·	(mm)	(mm)	323		
(mm) 120	mm)	(mm)	134		
	(mm)	(mm)	120		
(mm) 120	(mm)	(mm)	120		
(mm) 140	(mm)	(mm)	140		
(mm) 108	(mm)	(mm)	108		
(mm) 345	(mm)	(mm)	345		
kg 28 41	kg	kg	28 41		

Figure 2 General arrangement of spigots on product

Page 4 of 17

Filters

The filters installed in this product were ISO Coarse 65% in the extract air and ePM1 50% in the supply air stream located immediately before the heat exchanger. The filters can be seen in Figure 3.

Access to filters without tools - YES

Report No. P125968-1001

Type of fan control

Both the supply fan and the exhaust fan are located after the heat exchanger The fans are controlled independently by a laptop service tool and can be set at 0.01V intervals by the installer. The arrangement of the fans within the product can be seen in Figure 4.

Figure 4 General arrangement of fans in product

Commercial in Confidence

Template Version V2-082014

Summer by-pass - type

There is full summer by-pass installed Aldes Inspirair Top 450 Premium. Details of summer by-pass installed can be seen in Figure 5.



Figure 5 Summer by-pass.

Commercial in Confidence

Template Version V2-082014

Heat exchanger

The heat exchanger installed in this product is plastic, counter flow. The heat exchanger type tested is Recair, RU160-500-110, depth 500 mm. Details of heat exchangers installed can be seen in Figure 6.

Figure 6 Heat exchanger installed in the product.

2 Details of test programme

All testing was undertaken at BRE's HVAC Engineering test laboratory, Building 47, Garston, Watford, UK. All tests were undertaken by Dr M Swainson, Principal Engineer, and Claudiu Manescu, Engineer, HVAC Engineering and Building Diagnostics.

The following tests were undertaken in accordance with the: TESTM:01, *SAP 2012 Test method for centralised mechanical supply and extract ventilation systems with heat recovery used in single dwellings*. Issue 1.0, Dated 31/03/2015. <u>http://www.ncm-pcdb.org.uk/sap/page.jsp?id=24</u>

Determination of leakage - Clause 4.2.1

The external leakage was determined in accordance with BS EN 13141-7:2004 Clause 6.2.1. at + 250 Pa and – 250 Pa only. The leakage rate is expressed as a percentage of the manufacturer's claimed air flow rate at 100 Pa. If the test unit is not designed to operate at above 100 Pa then the leakage rate is expressed as a percentage of the manufacturer's claimed air flow rate at 50 Pa.

The internal leakage was determined in accordance with BS EN 13141-7:2004 Clause 6.2.1. at a pressure of +100 Pa on the exhaust air side only. The leakage rate is expressed as a percentage of the manufacturer's claimed air flow rate at 100 Pa. If the test unit is not designed to operate at above 100 Pa then the leakage rate is expressed as a percentage of the manufacturer's claimed air flow rate at 50 Pa.

Variable	Instrument used for measurement	Calibration
Air flow rate	Brookes 5853E Chell Display CCD100	In-situ cross calibration with nozzle box using Furness FCO560 Calibrator Furness Controls (UKAS)
Duct pressures	Furness Controls FCO332	In-situ 20 point pressure calibration with Furness FCO560 Calibrator Furness Controls (UKAS

Determination of aerodynamic performance - Clause 4.2.2

The electrical power at a range of air flow rate corresponding to a defined wet room configuration was determined following the method set out in Clause 4.2.2. The configuration of the supply and extract ducts for each wet room configuration was as set out in Clause 4.2.2. Figure 2.

The static pressure at each operating point was measured at a point within 50 mm of the spigot of the test product. This ensured that the true operating point could be transferred to the test for temperature ratio.

Variable	Instrument used for measurement	Calibration
Air flow rate	Hastings LFE LS-8S Chell Display CCD100	In-situ cross calibration with nozzle box using Furness FCO560 Calibrator Furness Controls (UKAS)
Duct pressure	Furness Controls FCO332	In-situ 20 point pressure calibration with Furness FCO560 Calibrator Furness Controls (UKAS)
External plenum pressure	Furness Controls FCO16	BRE calibration Services (UKAS)
Air temperature readings	PT100 1/10th DIN probes	In-situ 8 point temperature calibration with Isotech MilliK with 935-14-112 PRT Isotech (UKAS)
Absorbed electrical power	Yokogawa WT310E	Caltest (UKAS)

Determination of temperature ratio - Clause 4.3

BRE have a test rig configured to test to EN308:1997. The tests were undertaken in accordance with the requirements of EN308:1997 and the specific procedure for testing fans and ventilation units in: TESTM:01, *SAP 2012 Test method for centralised mechanical supply and extract ventilation systems with heat recovery used in single dwellings*. Issue 1.0, Dated 31/03/2015. <u>http://www.ncm-pcdb.org.uk/sap/page.jsp?id=24</u>

Instruments used in testing:

Variable	Instrument used for measurement	Calibration
Air flow rate	Hastings LFE LS-8S Chell Display CCD100	In-situ cross calibration with nozzle box using Furness FCO560 Calibrator Furness Controls (UKAS)
Air temperature readings	PT100 1/10 th DIN probes	In-situ 8 point temperature calibration with Isotech MilliK with 935-14-112 PRT Isotech (UKAS)
Air relative humidity readings	Vaisala HMP110	In-situ 8-point calibration with Michell S8000 Mirror Michell (Traceable NIST)
Duct pressure	Furness Controls FCO332	In-situ 20 point pressure calibration with Furness FCO560 Calibrator Furness Controls (UKAS)
Absorbed electrical power	Yokogawa WT310E	Caltest (UKAS)

Commercial in Confidence

3 Test results

Clause 4.2.1 Determination of leakage

Manufacturer's claimed air flow rate at 100 Pa is 470 m³/h = 130.5 l/s.

The tests were undertaken on 15th August 2023.

External leakage

Pressure applied (Pa)	Air flow rate (I/s)	Percentage of manufacturer's claimed max air flow rate (%)
+ 250	2.85	2.20%
- 250	2.48	1.90%

Internal leakage

Pressure applied exhaust (Pa)	Pressure applied supply (Pa)	Air flow rate (I/s)	Percentage of manufacturer's claimed max air flow rate (%)
+ 100	0	1.47	1.12%

Clause 4.2.2 Determination of aerodynamic performance

Variable	Test 1	Test 2	Test 3	Test 4	Test 5
Test point - kitchen plus (№) wet rooms	3	4	5	6	7
Fan speed setting – Supply	1.53V	1.95V	2.47V	2.95V	3.45V
Fan speed setting – Exhaust	1.4V	1.9V	2.33V	2.72V	3.15V
Exhaust air flow rate q ₁₁ (I/s @ STP)	27.0	33.0	39.0	45.0	51.0
Supply air flow rate q ₂₂ (I/s @ STP)	27.0	33.0	39.0	45.0	51.0
Static pressure extract air spigot (11) (Pa)	-25	-39	-51	-68	-91
Static pressure exhaust air spigot (₁₂) (Pa)	5	8	10	13	16
Static pressure fresh air spigot (₂₁) (Pa)	-11	-17	-24	-31	-39
Static pressure supply air spigot (22) (Pa)	14	19	27	34	44
Measured electrical power (W)	13.01	17.12	22.49	29.46	38.90
Calculated SFP (W/I/s)	0.48	0.52	0.58	0.65	0.76

The tests were undertaken on 28th August 2023.

The tests were undertaken on 21st August 2023.

Variable	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6
Test point - kitchen plus $(N^{\underline{o}})$ wet rooms	2	3	4	5	6	7
Fan speed setting – Supply	1.7V	2.3V	2.96V	3.65V	4.45V	5.2V
Fan speed setting – Exhaust	1.6V	2.2V	2.72V	3.35V	3.96V	4.55V
Exhaust air flow rate q ₁₁ (I/s @ STP)	29.0	37.0	45.0	53.0	61.0	69.0
Supply air flow rate q ₂₂ (I/s @ STP)	29.0	37.0	45.0	53.0	61.0	69.0
Static pressure extract air spigot (11) (Pa)	-38	-50	-74	-95	-127	-160
Static pressure exhaust air spigot (₁₂) (Pa)	6	9	13	17	22	27
Static pressure fresh air spigot (₂₁) (Pa)	-13	-21	-31	-42	-54	-68
Static pressure supply air spigot (22) (Pa)	21	28	40	54	78	98
Measured electrical power (W)	15.13	21.09	30.34	42.80	61.81	87.3
Calculated SFP (W/I/s)	0.52	0.57	0.67	0.81	1.01	1.27

Clause 4.3 Determination of thermal efficiency

Variable	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6
Test point - kitchen plus (№) wet rooms	2	3	4	5	6	7
Extract air temperature t ₁₁ (°C)	25.0	25.0	25.0	25.1	25.0	25.0
Fresh air temperature t ₂₁ (°C)	4.9	5.0	4.9	4.9	5.0	4.9
Wet bulb temperature t _{WB 11} (%)	12.9	13.0	12.9	12.9	13.2	13.3
Exhaust air temperature t ₁₂ (°C)	6.8	6.9	7.0	7.1	7.5	7.7
Supply air temperature t ₂₂ (°C)	23.5	23.5	23.4	23.5	23.3	23.3
Exhaust air flow rate q11 (l/s @ STP)	29.0	37.0	45.0	53.0	61.0	69.0
Supply air flow rate q ₂₂ (l/s @ STP)	29.0	37.0	45.0	53.0	61.0	69.0
Electrical power (W)	15.13	21.09	30.34	42.80	61.81	87.3
Static pressure extract air spigot (11) (Pa)	-38	-50	-74	-95	-127	-160
Static pressure exhaust air spigot (12) (Pa)	6	9	13	17	22	27
Static pressure fresh air spigot (21) (Pa)	-13	-21	-31	-42	-54	-68
Static pressure supply air spigot (22) (Pa)	21	28	40	54	78	98
Thermal efficiency (%)	92.4	92.3	92.4	92.1	91.6	91.4

The tests were undertaken on 05th October 2023 and 06th October 2023.

Results to be used for PCDB

Results of leakage tests

Table Q1

Internal	Pass
External	Pass

Results for SAP calculations (at minimum flow rate condition)

Table Q2 – Systems with rigid ductwork only SAP 2005 results

Exhaust terminal configuration	Fan speed setting	Air flow rate (I/s)	Specific fan power (W/l/s)	Heat exchange efficiency (%)
Kitchen + 3 additional wet rooms	Sup 1.53V Ext 1.4V	27.0	0.48	92
Kitchen + 4 additional wet rooms	Sup 1.95V Ext 1.9V	33.0	0.52	92
Kitchen + 5 additional wet rooms	Sup 2.47V Ext 2.33V	39.0	0.58	92
Kitchen + 6 additional wet rooms	Sup 2.95V Ext 2.72V	45.0	0.65	92
Kitchen + 7 additional wet rooms	Sup 3.45V Ext 3.15V	51.0	0.76	92

Table Q2 – Systems with rigid ductwork only SAP 2012 results

Exhaust terminal configuration	Fan speed setting	Air flow rate (I/s)	Specific fan power (W/I/s)	Heat exchange efficiency (%)
Kitchen + 2 additional wet rooms	Sup 1.7V Ext 1.6V	29.0	0.52	92
Kitchen + 3 additional wet rooms	Sup 2.3V Ext 2.2V	37.0	0.57	92
Kitchen + 4 additional wet rooms	Sup 2.96V Ext 2.72V	45.0	0.67	92
Kitchen + 5 additional wet rooms	Sup 3.65V Ext 3.35V	53.0	0.81	92
Kitchen + 6 additional wet rooms	Sup 4.45V Ext 3.96V	61.0	1.01	92
Kitchen + 7 additional wet rooms	Sup 5.2V Ext 4.55V	69.0	1.27	91